miércoles, 6 de junio de 2007

SOLUCION ISOTONICA

LA DEFINICION SERIA, sustancia con una concentracionde solidos igual a la concentracion interna de solidos de la celula, donde se aplique. Este es el concepto practico.el concepto teorico, academico es el siguiente, ISOTONIA, ES UN ESTADO DE EQUILIBRIO OSMOTICO ENTRE DOS SOLUCIONES SEPARADAS POR UNA MEMBRANA, O ENTRE UN ORGANISMO Y SU MEDIO AMBIENTE.ESTE CONCEPTO SE USA MUCHO EN LA MANUFACTURA DE COLIRIOS, PORQUE LA SOLUCION ISOTONICA, NO IRRITA EL OJO, POR EJEMPLO, PARA 0.3 GRAMOS DE ACIDO BORICO, LE AGREGAMOS 16.7 ML. DE AGUA DESTILADA, Y LA HACEMOS ISOTONICA CON EL FLUIDO LAGRIMAL, O SEA DE IGUAL CONCENTRACION DE SOLIDOS, PRODUCIENDO UNA SENSACION AGRADABLE AL AGREGAR EL COLIRIO O GOTEO EN EL OJO.OTRO EJEMPLO ES EL CLORURO DE SODIO EN SUERO INYECTADO, DEBE SER AL 0.9%.
El medio o solución isotónico es aquél en el cual la concentración de soluto esta en igual equilibrio fuera y dentro de una célula.
En hematología, se dice de las soluciones que tienen la misma concentración de sales que el suero de la sangre son isotónicas. Por tanto, tienen la misma presión osmótica que la sangre y no producen la deformación de los glóbulos rojos. Aplicando este término a la concentración muscular, se dice que una concentración es isotónica cuando la tensión del músculo permanece constante variando su longitud.



En biología, una solución hipotónica es aquella que tiene menor concentración de soluto en el medio externo en relación al medio citoplasmático de la célula. Una célula sumergida en una solución con una concentración más baja de materiales disueltos, esta en un ambiente hipotónico; la concentración de agua es más alta (a causa de tan pocos materiales disueltos) fuera de la célula que dentro. Bajo estas condiciones, el agua se difunde a la célula. Una célula en ambiente hipotónico se hincha con el agua y puede reventar; a éste proceso se le llama hemólisis pero solo cuando se da en los glóbulos rojos de la sangre. Los organismos que viven en suelos de arroyos y lagos habitan en agua de lluvia modificada, que es un ambiente hipotónico. Las celulas animales sufren el fenomeno de citolisis, que lleva a la destruccion e la celula, debido al paso del agua al interior de ella.Por otro lado, en las celulas vegetales ocurre el fenomeno de presion de turgencia: cuando entra agua, la celula se hincha pero no se destruye debido a la gran resistencia de la pared celular

En el comercio existen muchas soluciones ya preparadas para la reposición de déficit de líquidos. Cuando el volumen plasmático se encuentra contraído como resultado de la simple pérdida de líquido y electrolitos, el defecto puede ser corregido en muchos pacientes por la simple reposición de soluciones cristaloides. Cuando las pérdidas iniciales son de naturaleza más compleja, por ejemplo en el shock hemorrágico, estas mismas soluciones también tienen la capacidad de mejorar transitoriamente la función cardiovascular. En estas condiciones, el volumen de solución cristaloidea requerida es mucho mayor que la cantidad del fluído perdido. Sin embargo, puede emplearse solución fisiológica como medida de emrgencia inicial. Cuando el volumen plasmático es amenazado en forma crítica, el uso de soluciones coloidales es otra medida intermedia que resulta más eficaz que las soluciones cristaloides. Así pues, en función de su distribución corporal, las soluciones intravenosas utilizadas en fluidoterapia pueden ser clasificadas en: 1) Soluciones cristaloides y 2) Soluciones coloidales.
6. 1. SOLUCIONES CRISTALOIDES (TABLA 6 )
Las soluciones cristaloides son aquellas soluciones que contienen agua, electrolitos y/o azúcares en diferentes proporciones y que pueden ser hipotónicas, hipertónicas o isotónicas respecto al plasma 1 .
Su capacidad de expander volumen va a estar relacionada con la concentración de sodio de cada solución, y es este sodio el que provoca un gradiente osmótico entre los compartimentos extravascular e intravascular. Así las soluciones cristaloides isotónicas respecto al plasma, se van a distribuir por el fluído extracelular, presentan un alto índice de eliminación y se puede estimar que a los 60 minutos de la administración permanece sólo el 20 % del volumen infundido en el espacio intravascular. Por otro lado, la perfusión de grandes volúmenes de estas soluciones puede derivar en la aparición de edemas periféricos y edema pulmonar 16, 17, 18, 19, 20, 21, 22, 23.
Por su parte, las soluciones hipotónicas se distribuyen a través del agua corporal total. No estan incluídas entre los fluídos indicados para la resucitación del paciente crítico.Estas soluciones consisten fundamentalmente en agua isotonizada con glucosa para evitar fenómenos de lisis hemática. Sólo el 8 % del volumen perfundido permanece en la circulación, ya que la glucosa entra a formar parte del metabolismo general generándose CO2 y H2O y su actividad osmótica en el espacio extracelular dura escaso tiempo. Debido a la mínima o incluso nula presencia de sodio en estas soluciones, su administración queda prácticamnete limitada a tratamientos de alteraciones electrolíticas ( hipernatremia ), otros estados de deshidratación hipertónica y cuando sospechemos la presencia de hipoglucemia.
6. 1. 1. Soluciones cristaloides isoosmóticas
Dentro de este grupo las que se emplean habitualmente son las soluciones salina fisiológica ( ClNa 0.9 % ) y de Ringer Lactato que contienen electrolitos en concentración similar al suero sanguíneo y lactato como buffer.
6. 1. 1. 1. Salino 0.9 % ( Suero Fisiológico )
La solución salina al 0.9 % también denominada Suero Fisiológico, es la sustancia cristaloide estándar, es levemente hipertónica respecto al líquido extracelular y tiene un pH ácido. La relación de concentración de sodio (Na+) y de cloro (Cl ) que es 1/1 en el suero fisiológico, es favorable para el sodio respecto al cloro ( 3/2 ) en el líquido extracelular ( Na+ > Cl ). Contiene 9 gramos de ClNa o 154 mEq de Cl y 154 mEq de Na+ en 1 litro de H2O, con ina osmolaridad de 308 mOsm/L.
La normalización del déficit de la volemia es posible con la solución salina normal , aceptando la necesidad de grandes cantidades, debido a la libre difusión entre el espacio vascular e intersticial de esta solución.después de la infusión de 1 litro de suero salino sólo un 20-30 % del líquido infundido permanecerá en el espacio vascular después de 2 horas. Como norma general es aceptado que se necesitan administrar entre 3 y 4 veces el volumen perdido para lograr la reposición de los parámetros hemodinámicos deseados.
Estas soluciones cristaloides no producen una dilución excesiva de factores de coagulación, plaquetas y proteínas, pero en déficits severos se puede producir hipoalbuminemia, con el consecuente descenso de la presión coloidosmótica capilar (pc) y la posibilidad de inducir edema. Este descenso de la pc, con su repercusión en gradiente transcapilar, atribuído a la administración excesiva de soluciones cristaloides, ha sido considerada como favorecedor de la formación de edemas.
Si son perfundidas cantidades no controladas de solución de ClNa , el excedente de Cl del líquido extracelular desplaza los bicarbonatos dando una acidosis hiperclorémica. Es, por ello, una solución indicada en la alcalosis hipoclorémica e hipocloremias en general como las causadas por shock y quemaduras extensas.También se administra para corregir los volúmenes extracelulares y provoca la retención de sal y agua en el líquido extracelular.
6. 1. 1. 2. Ringer Lactato
La mayoría de las soluciones cristaloides son acidóticas y por tanto pueden empeorar la acidosis tisular que se presenta durante la hipoperfusión de los tejidos ante cualquier agresión. Sin embargo, la solución de Ringer Lactato contiene 45 mEq/L de cloro menos que el suero fisiológico, causando sólo hipercloremia transitoria y menos posibilidad de causar acidosis 1 .Y por ello, es de preferencia cuando debemos administrar cantidades masivas de soluciones cristaloides. Diríamos que es una solución electrolítica “ balanceada”, en la que parte del sodio de la solución salina isotónica es reemplazada por calcio y potasio 24 .
La solución de Ringer Lactato contiene por litro la siguiente proporción iónica: Na+= 130 mEq, Cl = 109 mEq, Lactato= 28 mEq, Ca2+ = 3 mEq y K+ = 4 mEq.Estas proporciones le supone una osmolaridad de 273 mOsm/L, que si se combina con glucosa al 5 % asciende a 525 mEq/L. El efecto de volumen que se consigue es muy similar al de la solución fisiológica normal .
El Ringer Lactato contiene una mezcla de D-lactato y L-lactato. La forma L-lactato es la más fisiológica, siendo metabolizada por la láctico deshidrogenasa, mientras que la forma D-lactato se metaboliza por medio de la D-a-deshidrogenasa. En los seres humanos , el aclaramiento de la D-lactato es un 30 % más lento que el aclaramiento de la forma L-lactato. La forma D-lactato se encuentra en el plasma a una concentración usualmente menor de 0.02 mmO/L, ya que a concentraciones superiores a 3 mmO/L produciría encefalopatía. Un daño hepatocelular o una menor perfusión hepática, en combinación con un componente hipóxico disminuiría el aclaramiento de lactato y por consiguiente riesgo de daño cerebral 25 .
La infusión de Ringer Lactato, contiene 28 mEq de buffer por litro de solución, que es primeramente transformado en piruvato y posteriormente en bicarbonato durante su metabolismo como parte del ciclo de Cori 26, 27 .
La vida media del lactato plasmático es de más o menos 20 minutos, pudiéndose ver incrementado este tiempo a 4 ó 6 horas en pacientes con shock y a 8 horas si el paciente es poseedor de un by-pass cardiopulmonar.
6. 1. 1. 3. Solución Salina Hipertónica
Las soluciones hipertónicas e hiperosmolares han comenzado a ser más utilizados como agentes expansores de volumen en la reanimación de pacientes en shock hemorrágico 28. Ciertos trabajos demuestran que el cloruro sódico es superior al acetato o al bicarbonato de sodio en determinadas situaciones. Por otro lado, el volumen requerido para conseguir similares efectos, es menor con salino hipertónico que si se utiliza el fisiológico normal isotónico 23 .
En lo referente a la duración del efecto hemodinámico, existen distintas experiencias, desde aquellos que consideraban que mantenían el efecto durante aproximadamente 24 horas, hasta estudios más recientes que han ido limitando su duración a períodos comprendidos entre 15 minutos y 1 hora.
Entre sus efectos beneficiosos, además del aumento de la tensión arterial, se produce una disminución de las resistencias vasculares sistémicas, aumento del índice cardíaco y del flujo esplénico 29, 30, 31 .
El mecanismo de actuación se debe principal y fundamentalmente, al incremento de la concentración de sodio y aumento de la osmolaridad que se produce al infundir el suero hipertónico en el espacio extracelular ( compartimento vascular ). Así pues, el primer efecto de las soluciones hipertónicas sería el relleno vascular. Habría un movimiento de agua del espacio intersticial y/o intracelular hacia el compartimento intravascular. Recientemente se ha demostrado que el paso de agua sería fundamentalmente desde los glóbulos rojos y células endoteliales ( edematizadas en el shock ) hacia el plasma, lo que mejoraría la perfusión tisular por disminución de las resistencias capilares.Una vez infundida la solución hipertónica, el equilibrio hidrosalino entre los distintos compartimentos se produce de una forma progresiva y el efecto osmótico también va desapareciendo de manera gradual 32 .
Experimentalmente, se ha demostrado que ocurre una vasodilatación precapilar en los territorios renal, coronario y esplácnico, que parece estar relacionada con la hipertonicidad de la solución. Junto a este efecto vasodilatador sobre los territorios antes señalados, se produce una vasoconstricción refleja en los territorios músculo-cutáneos en un intento de compensar la redistribución de los líquidos. Para que esto se produzca, es necesaria la integridad del arco reflejo vagal; cuyo punto de partida está en el pulmón, y cuyo agente estimulador encargado de poner en marcha este reflejo sería el cloruro sódico, que actuaría sobre los osmorreceptores pulmonares.
El inotropismo cardíaco también parece estar relacionado con la hipertonicidad del suero 29 , pero si ésta llegase a ser muy elevada podría tener efectos depresores. Como se ha comentado anteriormente, los efectos cardiovasculares de las soluciones hiperosmóticas son usualmente transitorios.
Otros efectos de la solución hipertónica son la producción de hipernatremia (entre 155-160 mmol/L ) y de hiperosmolaridad ( 310-325 mOsm/L). Esto puede ser de suma importancia en ancianos y en pacientes con capacidades cardíacas y/o pulmonares limitadas 1, 33 . Por ello es importante el determinar el volumen máximo de cloruro sódico que se puede administrar, ya que parece deberse a la carga sódica el efecto sobre dichos órganos. También se ha demostrado que la perfusión de suero hipertónico eleva menos la PIC ( Presión Intracraneal ).
Experimentalmente, comparando el Ringer Lactato con el ClNa Hipertónico, no se ha encontrado ninguna diferencia en la admisión venosa pulmonar y agua intrapulmonar.
Los efectos de la solución salina hipertónica no se limitan al simple relleno vascular, de duración limitada, o a un paso de agua hacia el espacio intravascular sino que tiene efectos más duraderos y beneficiosos sobre la perfusión esplácnica que lo hacen prometedor para la reanimación del shock.
De forma general, la infusión de NaCl al 5 % es adecuada para estimular el sistema simpático en individuos sanos 34. Los niveles de renina, aldosterona, cortisol, ACTH, norepinefrina, epinefrina y vasopresina, los cuales se elevan durante el shock hemorrágico, estan reducidos después de la administración de suero hipertónico, mientras que con una infusión de cantidad similar de suero isotónico no tiene efecto sobre los niveles de estas hormonas 35.
Una cuestión que ha de tenerse en cuenta, es que la rápida infusión de solución hipertónica puede precipitar una mielinolisis pontina 25, 36, 37 . Al igual, que debe ser usado con precaución en pacientes con insuficiencia renal, donde la excreción de sodio y cloro suelen estar afectados.
La solución recomendada es al 7.5 % con una osmolaridad de 2.400 mOsm/L. Es aconsejable monitorizar los niveles de sodio para que no sobrepasen de 160 mEq/L y que la osmolaridad sérica sea menor de 350 mOsm/L. Destacar que la frecuencia y el volumen total a administrar no estan actualmente bien establecidos 13, 1 .
Para finalizar, experimentalmente se ha asociado la solución de ClNa con macromoléculas con la pretensión de aumentar la presión oncótica de la solución y así retener más tiempo el volumen administrado en el sector plasmático. En clínica humana, se asocia a hidroxietialmidón con buenos resultados 38, 39 .
6. 1. 1. 4. Soluciones de comportamiento similar al agua
Se clasifican en glucídicas isotónicas o glucosalinas isotónicas.
6. 1. 1. 4. 1. Suero glucosado al 5 %
Es una solución isotónica ( entre 275-300 mOsmol/L ) de glucosa, cuya dos indicaciones principales son la rehidratación en las deshidrataciones hipertónicas ( por sudación o por falta de ingestión de líquidos ) y como agente aportador de energía.
La glucosa se metaboliza en el organismo, permitiendo que el agua se distribuya a través de todos los compartimentos del organismo, diluyendo los electrolitos y disminuyendo la presión osmótica del compartimento extracelular. El desequilibrio entre las presiones osmóticas de los compartimentos extracelular e intracelular, se compensa por el paso de agua a la célula. En condiciones normales, los osmorrecptores sensibles al descenso de la presión osmótica, inhiben la secreción de hormona antidiurética y la sobrecarga de líquido se compensa por un aumento de la diuresis.
El suero glucosado al 5 % proporciona, además, un aporte calórico nada despreciable. Cada litro de solución glucosada al 5 % aporta 50 gramos de glucosa, que equivale a 200 kcal. Este aporte calórico reduce el catabolismo protéico, y actúa por otra parte como protector hepático y como material de combustible de los tejidos del organismo más necesitados ( sistema nervioso central y miocardio ).
Las indicaciones principales de las soluciones isotónicas de glucosa al 5 % son la nutrición parenteral en enfermos con imposibilidad de aporte oral. Aquellos estados de deshidratación intracelular y extracelular como los que se producen en casos de vómitos, diarreas, fístulas intestinales, biliares y pancreáticas, estenosis pilórica, hemorragias, shock, sudación profusa, hiperventilación, poliurias, diabetes insípida, etc..., alteraciones del metabolismo hidrocarbonado que requieren de la administración de agua y glucosa.
Entre las contraindicaciones principales tenemos aquellas situaciones que puedan conducir a un cuadro grave de intoxicación acuosa por una sobrecarga desmesurada de solución glucosada, y enfermos addisonianos en los cuales se puede provocar una crisis addisoniana por edema celular e intoxicación acuosa.

3 comentarios:

fabian dario dijo...

gracias compadres me sacaron varias dudas respecto a las soluciones. un abrazo fabian lopez..

Paloma dijo...

gracias por la explicacion
, a veces estamos hartos de utilizar los sueros sin saber claramente la utilizacion y el por qúé la elección de cada uno de ellos y lo haces solo por rutina o por que te lo indicaron así.

Zoroastro Zeuz dijo...

Buena leccion con respecto a la importancia de las soluciones IV .